تبلیغات

ساخت صفحات پاپ آپ

انجمن ریاضی دبیرستان وابسته به دانشگاه رازی(2) - اعداد مثلثی
انجمن ریاضی دبیرستان وابسته به دانشگاه رازی(2)

لینکدونی

آرشیو موضوعی

آرشیو

لینکستان

← آمار وبلاگ

  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :

اعداد مثلثی

نویسنده: سینا زهتابان


Triangle Numbers
اعداد مثلثی
1، 3، 6، 10، 15، 21 و ... بنظر شما این اعداد چه ویژگی مشترکی دارند؟ اگر دست به قلم نشویم و شکل نکشیم و آزمایش نکنیم، فهمیدن ارتباط میان آنها کمی دشوار است. به این شکل دقت کنید مشکل شما حل خواهد شد. به اعداد موجود در این سری، اعداد مثلثی می گوییم.

1 = 1
3= 1+2
6= 1+2+3
10= 1+2+3+4
15= 1+2+3+4+5
21= 1+2+3+4+5+6
. . .

اما شکل اول یک ایده جدید به ما می دهد که می توانیم این اعداد را همانند پاراگراف بالا نیز تفسیر کنیم.

به بیان دیگر می توان گفت که هرعدد مثلثی تشکیل شده است از حاصل جمع یکسری از اعداد متولی طبیعی. به این معنی که اولین عدد مثلثی مساوی است با مجموع یک عدد از اعداد طبیعی، دومین معادل است با مجموع دو عدد از اعداد طبیعی، سومین معادل است با مجموع س عدد از اعداد طبیعی و ... و بالاخره n امین عدد مثلثی معادل است با مجموع n عدد از اعداد طبیعی که اگر ریاضیات دبیرستان را هنوز فراموش نکرده باشید بخاطر خواهید آورد که مقدار این عدد معادل n(n+1)/2 خواهد بود. (یک تصاعد ساده حسابی)

Triangle Numbers
مجموع دو عدد مثلثی متوالی
اگر هر دو عدد پشت سرهم در سری اعداد مثلثی را با هم جمع کنیم حاصل جمع یک عدد مربع می شود. مثلا" 1+3=4 یا 3+6=9 یا 6+10=16 و ... البته دلیل آن ساده است به شکل دوم توجه کنید و ببینید که چگونه دو مثلث قرمز و سبز روی هم تشکیل یک مربع را می دهند. (سعی کنید با استدلال ریاضی هم این موضوع را ثابت کنید، ساده است از همان رابطه بالا استفاده کنید.)

مطلب اخیر اغلب بصورت قضیه "مربع هر عدد طبیعی برابر است با مجموع دو عدد مثلثی متوالی" نیز مطرح می شود.

What do eccentric heel drops do?
دوشنبه 27 شهریور 1396 07:19 ق.ظ
Howdy! Someone in my Myspace group shared this site with us so I came to give it a
look. I'm definitely loving the information. I'm bookmarking and will be
tweeting this to my followers! Terrific blog and amazing design and style.
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر

درباره وبلاگ

با سلام مطالب این وبسایت از سایت انجمن ریاضی دبیرستان وابسته به دانشگاه رازی گرفته شده
مدیر وبلاگ : محمدرضا میری

آخرین پست ها

جستجو

نویسندگان

یافاطمة الزهراء سلام الله علیها